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bal Construct Covariate Balance Statistics for Models with Multivariate
Exposure

Description

Assessing balance between exposure(s) and confounders is key when performing causal analysis
using propensity scores. We provide a list of several models to generate weights to use in causal in-
ference for multivariate exposures, and test the balancing property of these weights using weighted
Pearson correlations. In addition, returns the effective sample size.

Usage

bal(
model_list,
D,
C,
common = FALSE,
trim_w = FALSE,
trim_quantile = 0.99,
all_uni = TRUE,
...

)

Arguments

model_list character string identifying which methods to use when constructing weights.
See details for a list of available models

D numeric matrix of dimension n by m designating values of the exposures

C either a list of numeric matrices of length m of dimension n by pj designating
values of the confounders for each exposure value or if common is TRUE a sin-
gle matrix of of dimension n by p that represents common confounders for all
exposures.

common logical indicator for whether C is a single matrix of common confounders for all
exposures. default is FALSE meaning C must be specified as list of confounders
of length m.

trim_w logical indicator for whether to trim weights. default is FALSE
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trim_quantile numeric scalar used to specify the upper quantile to trim weights if applicable.
default is 0.99

all_uni logical indicator. If TRUE then all univariate models specified in model_list will
be estimated for each exposure. If FALSE will only estimate weights for the first
exposure

... additional arguments to pass to weightit function if specifying one of these
models in the model_list

Details

When using propensity score methods for causal inference it is crucial to check the balancing prop-
erty of the covariates and exposure(s). To do this in the multivariate case we first use a weight
generating method from the available list shown below.

Methods Available:

• "mvGPS": Multivariate generalized propensity score using Gaussian densities
• "entropy": Estimating weights using entropy loss function without specifying propensity

score (Tübbicke 2020)
• "CBPS": Covariate balancing propensity score for continuous treatments which adds balance

penalty while solving for propensity score parameters (Fong et al. 2018)
• "PS": Generalized propensity score estimated using univariate Gaussian densities
• "GBM": Gradient boosting to estimate the mean function of the propensity score, but still

maintains Gaussian distributional assumptions (Zhu et al. 2015)

Note that only the mvGPS method is multivariate and all others are strictly univariate. For univariate
methods weights are estimated for each exposure separately using the weightit function given
the confounders for that exposure in C when all_uni=TRUE. To estimate weights for only the first
exposure set all_uni=FALSE.

It is also important to note that the weights for each method can be trimmed at the desired quantile
by setting trim_w=TRUE and setting trim_quantile in \[0.5, 1\]. Trimming is done at both the
upper and lower bounds. For further details see mvGPS on how trimming is performed.

Balance Metrics:
In this package we include three key balancing metrics to summarize balance across all of the
exposures.

• Euclidean distance
• Maximum absolute correlation
• Average absolute correlation

Euclidean distance is calculated using the origin point as reference, e.g. for m=2 exposures the
reference point is \[0, 0\]. In this way we are calculating how far the observed set of correlation
points are from perfect balance.
Maximum absolute correlation reports the largest single imbalance between the exposures and the
set of confounders. It is often a key diagnostic as even a single confounder that is sufficiently out
of balance can reduce performance.
Average absolute correlation is the sum of the exposure-confounder correlations. This metric
summarizes how well, on average, the entire set of exposures is balanced.
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Effective Sample Size:
Effective sample size, ESS, is defined as

ESS = (Σiwi)
2/Σiw

2
i ,

where wi are the estimated weights for a particular method (Kish 1965). Note that when w = 1
for all units that the ESS is equal to the sample size n. ESS decreases when there are extreme
weights or high variability in the weights.

Value

• W: list of weights generated for each model

• cor_list: list of weighted Pearson correlation coefficients for all confounders specified

• bal_metrics: data.frame with the Euclidean distance, maximum absolute correlation, and
average absolute correlation by method

• ess: effective sample size for each of the methods used to generate weights

• models: vector of models used

References

Fong C, Hazlett C, Imai K (2018). “Covariate balancing propensity score for a continuous treat-
ment: application to the efficacy of political advertisements.” Annals of Applied Statistics, In-Press.

Kish L (1965). Survey Sampling. John Wiley \& Sons, New York.

Tübbicke S (2020). “Entropy Balancing for Continuous Treatments.” arXiv e-prints. 2001.06281.

Zhu Y, Coffman DL, Ghosh D (2015). “A boosting algorithm for estimating generalized propensity
scores with continuous treatments.” Journal of Causal Inference, 3(1), 25-40.

Examples

#simulating data
sim_dt <- gen_D(method="u", n=150, rho_cond=0.2, s_d1_cond=2, s_d2_cond=2,
k=3, C_mu=rep(0, 3), C_cov=0.1, C_var=1, d1_beta=c(0.5, 1, 0),
d2_beta=c(0, 0.3, 0.75), seed=06112020)
D <- sim_dt$D
C <- sim_dt$C

#generating weights using mvGPS and potential univariate alternatives
require(WeightIt)
bal_sim <- bal(model_list=c("mvGPS", "entropy", "CBPS", "PS", "GBM"), D,
C=list(C[, 1:2], C[, 2:3]))

#overall summary statistics
bal_sim$bal_metrics

#effective sample sizes
bal_sim$ess
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#we can also trim weights for all methods
bal_sim_trim <- bal(model_list=c("mvGPS", "entropy", "CBPS", "PS", "GBM"), D,
C=list(C[, 1:2], C[, 2:3]), trim_w=TRUE, trim_quantile=0.9, p.mean=0.5)
#note that in this case we can also pass additional arguments using in
#WeighIt package for entropy, CBPS, PS, and GBM such as specifying the p.mean

#can check to ensure all the weights have been properly trimmed at upper and
#lower bound
all.equal(unname(unlist(lapply(bal_sim$W, quantile, 0.99))),
unname(unlist(lapply(bal_sim_trim$W, max))))
all.equal(unname(unlist(lapply(bal_sim$W, quantile, 1-0.99))),
unname(unlist(lapply(bal_sim_trim$W, min))))

gen_D Generate Bivariate Multivariate Exposure

Description

Generate exposure from a bivariate normal distribution confounded by a set of variables C=\(C1,
C2).

Usage

gen_D(
method,
n,
rho_cond,
s_d1_cond,
s_d2_cond,
k,
C_mu,
C_cov,
C_var,
C_sigma = NULL,
d1_beta,
d2_beta,
seed = NULL

)

Arguments

method character value identifying which method to use when generating bivariate ex-
posure. Options include "matrix_normal", "uni_cond", and "vector_normal".
See details for a brief explanation of each method. uni_cond is fastest

n integer value total number of units

rho_cond scalar value identifying conditional correlation of exposures given covariates
between \[0, 1\]
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s_d1_cond scalar value for conditional standard deviation of D1

s_d2_cond scalar value for conditional standard deviation of D2

k integer value determining number of covariates to generate in C.

C_mu numeric vector of mean values for covariates. Must be same length as k

C_cov scalar value representing constant correlation between covariates

C_var scalar value representing constant variance of covariates

C_sigma numeric matrix representing the covariance matrix of covariates. Default is
NULL and will use C_var and C_var otherwise.

d1_beta numeric vector of length k defining the mean of D1 with respect to the covariates

d2_beta numeric vector of length k defining the mean of D2 with respect to the covariates

seed integer value setting the seed of random generator to produce repeatable results.
set to NULL by default

Details

Generating Confounders:
We assume that there are a total of k confounders that are generated from a multivariate normal
distribution with equicorrelation covariance, i.e.,

ΣC = ϕ(11T − I) + Iσ2
C ,

where 1 is the column vector with all entries equal to 1, I is the identity matrix, σ2
C is a constant

standard deviation for all confounders, and ϕ is the covariance of any two confounders. Therefore,
our random confounders C follow the distribution

C ∼ Nk(µC ,ΣC).

We draw a total of n samples from this multivariate normal distribution using mvrnorm.

Generating Bivariate Exposure:
The first step when generating the bivariate exposure is to specify the effects of the confounders
C. We control this for each exposure value using the arguments d1_beta and d2_beta such that

E[D1 | C] = βT
D1C

and
E[D2 | C] = βT

D2C

.
Note that by specifying d1_beta and d2_beta separately that the user can control the amount
of overlap in the confounders for each exposure, and how many of the variables in C are truly
related to the exposures. For instance to have the exposure have identical confounding effects
d1_beta=d2_beta, and they have separate confounding if there are zero non-zero elements in
common between d1_beta and d2_beta.
To generate the bivariate conditional distribution of exposures given the set of confounders C we
have the following three methods:

• "matrix_normal"
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• "uni_cond"
• "vector_normal"

"matrix_normal" uses the function rmatnorm to generate all n samples as

D | C ∼ Nn×2(βC, In,Ω)

where β is a column vector containing βT
D1 and βT

D2, and Ω is the conditional covariance matrix.
"vector_normal" simply vectorizes the matrix_normal method above to generate a vector of length
n× 2.
"uni_cond" specifies the bivariate exposure using univariate conditional factorization, which in
the case of bivariate normal results in two univariate normal expressions.
In general, we suggest using the univariate conditional, "uni_cond", method when generating
exposures as it is substantially faster than both the matrix normal and vector normal approaches.
Note that the options use regular expression matching and can be specified uniquely using either
"m", "u", or "v".

Marginal Covariance of Exposures:
As described above the exposures are drawn conditional on the set C, so the marginal covariance
of exposures is defined as

ΣD = βΣCβ
T +Ω.

In our function we return the true marginal covariance ΣD as well as the true marginal correlation
ρD.

Value

• D: nx2 numeric matrix of the sample values for the exposures given the set C

• C: nxk numeric matrix of the sampled values for the confounding set C

• D_Sigma: 2x2 numeric matrix of the true marginal covariance of exposures

• rho: numeric scalar representing the true marginal correlation of exposures

Examples

#generate bivariate exposures. D1 confounded by C1 and C2. D2 by C2 and C3
#uses univariate conditional normal to draw samples
sim_dt <- gen_D(method="u", n=200, rho_cond=0.2, s_d1_cond=2, s_d2_cond=2, k=3,
C_mu=rep(0, 3), C_cov=0.1, C_var=1, d1_beta=c(0.5, 1, 0), d2_beta=c(0, 0.3, 0.75), seed=06112020)
D <- sim_dt$D
C <- sim_dt$C

#observed correlation should be close to true marginal value
cor(D); sim_dt$rho

#Use vector normal method instead of univariate method to draw samples
sim_dt <- gen_D(method="v", n=200, rho_cond=0.2, s_d1_cond=2, s_d2_cond=2, k=3,
C_mu=rep(0, 3), C_cov=0.1, C_var=1, d1_beta=c(0.5, 1, 0), d2_beta=c(0, 0.3, 0.75), seed=06112020)
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hull_sample Sample Points Along a Convex Hull

Description

To define a proper estimable region with multivariate exposure we construct a convex hull of the
data in order to maintain the positivity identifying assumption. We also provide options to create
trimmed versions of the convex hull to further restrict to high density regions in multidimensional
space.

Usage

hull_sample(
X,
num_grid_pts = 500,
grid_type = "regular",
trim_hull = FALSE,
trim_quantile = NULL

)

Arguments

X numeric matrix of n by m dimensions. Each row corresponds to a point in m-
dimensional space.

num_grid_pts integer scalar denoting the number of parameters to search for over the convex
hull. Default is 500.

grid_type character value indicating the type of grid to sample from the convex hull from
spsample

trim_hull logical indicator of whether to restrict convex hull. Default is FALSE

trim_quantile numeric scalar between \[0.5, 1\] representing the quantile value to trim the
convex hull. Only used if trim_hull is set to TRUE.

Details

Assume that X is an n × m matrix representing the multivariate exposure of interest. We can
define the convex hull of these observations as H. There are two distinct processes for defining H
depending on whether m = 2 or m > 2.

If m = 2, we use the chull function to define the vertices of the convex hull. The algorithm
implemented is described in Eddy (1977).

If m > 2, we use the convhulln function. This algorithm for obtaining the convex hull in m-
dimensional space uses Qhull described in Barber et al. (1996). Currently this function returns only
the vertex set hpts_vs without the grid sample points. There are options to visualize the convex
hull when m = 3 using triangular facets, but there are no implementable solutions to sample along
convex hulls in higher dimensions.
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To restrict the convex hull to higher density regions of the exposure we can apply trimming. To
apply trimming set trim_hull=TRUE and specify trim_quantile=q where q must be in \[0.5, 1\].
Along each exposure dimension we then calculate the upper and lower bounds using the quantile
function, i.e., quantile(q) and quantile(1-q). Any observations that have a value above or
below these sample quantiles is excluded. The remaining observations that fall completely within
the sample quantiles across all dimensions are used to estimate the convex hull. We return X that
represents the observations used. If trim_hull=FALSE, then X is unchanged. However, if trimming
is applied then X contains only the remaining observations after trimming.

Value

• hpts_vs: vertices of the convex hull in m-dimensional space

• grid_pts: values of grid points sampled over the corresponding convex hull

• X: data used to generate convex hull which may be trimmed

References

Barber CB, Dobkin DP, Huhdanpaa H (1996). “The quickhull algorithm for convex hulls.” ACM
Transactions on Mathematical Software (TOMS), 22(4), 469-483.

Eddy WF (1977). “A new convex hull algorithm for planar sets.” ACM Transactions on Mathe-
matical Software (TOMS), 3(4), 398-403.

Examples

#generating exposure with m=3
D <- matrix(unlist(lapply(seq_len(3), function(m) rnorm(100))), nrow=100)

#first using only the first two variables we can return hpts_vs and grid_pts
D_hull <- hull_sample(D[, 1:2])

#when m>2 we only return hpts_vs and grid_pts is NULL
D_hull_large <- hull_sample(D)
is.null(D_hull_large$grid_pts)

#we can also apply trimming to the convex hull and return this reduced matrix
D_hull_trim <- hull_sample(D[, 1:2], trim_hull=TRUE, trim_quantile=0.95)
dim(D_hull$X)
dim(D_hull_trim$X)

#alternatively, we can also define the number of points to sample from for grid_pts
small_grid <- hull_sample(D[, 1:2], num_grid_pts=100)
length(D_hull$grid_pts)
length(small_grid$grid_pts)
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mvGPS Multivariate Generalized Propensity Score

Description

Estimate propensity scores for multivariate continuous exposure by assuming joint normal condi-
tional densities. Simultaneously estimate stabilized inverse probability of treatment weights (IPTW)
using joint normal density for marginal distribution of exposure.

Usage

mvGPS(D, C, common = FALSE, trim_w = FALSE, trim_quantile = 0.99)

Arguments

D numeric matrix of dimension n by m designating values of the exposures

C either a list of numeric matrices of length m of dimension n by pj designating
values of the confounders for each exposure value or if common is TRUE a sin-
gle matrix of of dimension n by p that represents common confounders for all
exposures.

common logical indicator for whether C is a single matrix of common confounders for all
exposures. default is FALSE meaning C must be specified as list of confounders
of length m.

trim_w logical indicator for whether to trim weights. default is FALSE

trim_quantile numeric scalar used to specify the upper quantile to trim weights if applicable.
default is 0.99

Details

Generalized propensity scores (GPS) were proposed by Hirano and Imbens (2004) and Imai and Van
Dyk (2004) to extend propensity scores to handle continuous exposures. The GPS is constructed
using the conditional density of the exposure given a set of confounders. These original methods
and the subsequent literature have focused on the case of a single continuous exposure where the
GPS could be estimated using normal densities, kernel smoothing (Kennedy et al. 2017), gradient
boosting (Zhu et al. 2015), and empirical likelihoods (Fong et al. 2018). In this package we provide
an extension to this literature to allow for multivariate continuous exposures to be estimated.

Notation:
Assume that we have a set of continuous exposures, D, of length m, i.e., D = D1, . . . , Dm

collected on n units. Further, we assume that there exists a set of confounders C1, . . . ,Cm for
each exposure of length pj for j = 1, . . . ,m. The confounders are related to both the exposures
and the outcome of interest such. Note that the confounders need not be identical for all exposures.
In our function we therefore expect that the argument D is a numeric matrix of dimension n×m,
and that C is a list of length m where each element is a matrix of dimension n× pj . For the case
where we assume that all exposures have common confounders we set common=TRUE and C must
be a matrix of dimension n× p.
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mvGPS:
We define the multivariate generalized propensity score, mvGPS, as

mvGPS = fD|C1,...,Cm

where f represents a joint multivariate conditional density function. For our current development
we specify f as multivariate normal, i.e.,

D | C1, . . . ,Cm ∼ Nm(µ,Σ).

Factorizing this joint density we can rewrite the mvGPS as the product of univariate conditional
densities, i.e.,

mvGPS = fDm|Cm,Dm−1,...,D1
× · · · × fD1|C1

.

We use this factorized version in our implementation, with parameters for each distribution esti-
mated through least squares.

Constructing Weights:
Following Robins et al. (2000), we use the mvGPS to construct stabilized inverse probability of
treatment (IPTW) weights. These have been shown to balance confounders and return unbiased
estimated of the dose-response. Weights are constructed as

w =
fD

fD|C1,...,Cm

,

where the marginal density fD of the exposures is assumed to be multivariate normal as well.
Writing the weights using completely factorized densities we have

w =
fDm|Dm−1,...,D1

× · · · × fD1

fDm|Cm,Dm−1,...,D1
× · · · × fD1|C1

.

Trimming:
Often when using weights based on the propensity score, practitioners are concerned about the
effect of extreme weights. It has been shown that an effective way to protect extreme weights
is to trim them at a particular percentile (Crump et al. 2009; Lee et al. 2011). We allow users
to specify whether trimmed weights should be returned and at which threshold. To trim weights
set trim_w=TRUE and specify the desired percentile as trim_quantile=q. Note that trimming is
applied at both the upper and lower percentile thresholds, i.e.,

w∗ = w1{Q(w,1−q)≤w≤Q(w,q)} +Q(w, 1− q)1{w<Q(w,1−q)} +Q(w, q)1{w>Q(w,q)}

Value

list of score and wts, where score is the mvGPS score values and wts are the corresponding stabilized
inverse probability of treatment weights

References

Crump RK, Hotz VJ, Imbens GW, Mitnik OA (2009). “Dealing with limited overlap in estimation
of average treatment effects.” Biometrika, 96(1), 187-199.
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Fong C, Hazlett C, Imai K (2018). “Covariate balancing propensity score for a continuous treat-
ment: application to the efficacy of political advertisements.” Annals of Applied Statistics, In-Press.

Hirano K, Imbens GW (2004). “The propensity score with continuous treatments.” In Gelman
A, Meng X (eds.), Applied Bayesian Modeling and Causal Inference from Incomplete-Data Per-
spectives, 73-84.

Imai K, Van Dyk DA (2004). “Causal inference with general treatment regimes: generalizing the
propensity score.” Journal of the American Statistical Association, 99(467), 854-866.

Kennedy EH, Ma Z, McHugh MD, Small DS (2017). “Non-parametric methods for doubly ro-
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79(4), 1229-1245.

Lee BK, Lessler J, Stuart EA (2011). “Weight trimming and propensity score weighting.” PloS
One, 6(3).

Robins JM, Hernan MA, Brumback B (2000). “Marginal structural models and causal inference
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Examples

#generating confounded bivariate exposure
sim_dt <- gen_D(method="u", n=200, rho_cond=0.2, s_d1_cond=2, s_d2_cond=2, k=3,
C_mu=rep(0, 3), C_cov=0.1, C_var=1, d1_beta=c(0.5, 1, 0), d2_beta=c(0, 0.3, 0.75), seed=06112020)
D <- sim_dt$D
C <- sim_dt$C

#generating weights and mvGPS
out_mvGPS <- mvGPS(D=D, C=list(C[, 1:2], C[, 2:3]))

# can apply trimming with default 99th percentile
out_mvGPS_trim <- mvGPS(D=D, C=list(C[, 1:2], C[, 2:3]), trim_w=TRUE)

#or assume all exposures have equivalent confounders
out_mvGPS_common <- mvGPS(D=D, C=C, common=TRUE)
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